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Abstract
The ‘d’-wave superconductor is mapped to a 2 + 1 Dirac fermion coupled
to the Nambu–Goldstone phase. We integrate the Dirac fermion equation
using the loop expansion and derive the Nambu–Goldstone phase action. This
action is used to compute the ohmic conductivity and to estimate the Meissner
penetration length.

1. Introduction

We study the electromagnetic properties of a two-dimensional ‘d’-wave superconductor with a
square Fermi surface [1]. A crucial ingredient of our calculation derives from the polarization
diagram, given by

�µ,ν(�q, ω)Aµ(�q, ω)Aν(−�q,−ω) where Aµ(�x, t) = ∂µα(�x, t)− 2eaextµ

with α the Nambu–Goldstone phase of the superconductor. Due to the fact that the neutral-
fermion excitations are described with the help of the Dirac equation in 2 + 1 dimensions,
one obtains that the paramagnetic contribution of the polarization diagram is proportional to
q2/

√
(q2 − ω2 − iε). This result has a number of consequences. We find that at T = 0 the

penetration depth is given by

δ = δ0

(
�−�c

�c

)−1/2

� > �c

(� is the ‘d’-wave superconducting order parameter). At finite temperature we obtain

δ(T ) = δ0(0)(1 − T/T̃0)
−1/2(1 − T/T ∗)−1/2 T ∗ = T0(�(0)/�c − 1).

The penetration depth is controlled by two parts. The first one, (1 − T/T̃0)
−1/2, is similar to

the usual one and is controlled by the number of superconducting pairs. The second one is
due to the paramagnetic polarization contribution. Recently a minimum penetration depth of
YBa2Cu3O7−δ films has been observed [9] and has been interpreted as evidence for low-energy
Andreev bound states. Here we will not consider the bound states. Instead we will consider
the penetration depth in the quasi-static limit. We find that for |ω/vq| > 1, due to the branch
cut induced by the polarization diagram, the penetration depth as a function of temperature
has a minimum and the conductivity has an ohmic part.
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We find that, since the Dirac spectrum is gapless, the charge–charge correlation has the
form (

q

ω

)2(
1 +

constant

�

q2√
q2 − ω2 − iε

)
.

The plan of the paper is as follows. In section 2 we derive the effective action. We consider
a square Fermi surface in the presence of a d-wave order parameter. We derive a Dirac action.
We treat the Nambu–Goldstone phase as a gauge field. As a result we obtain a relativistic
gauge theory in 2 + 1 dimensions. The integration of the relativistic fermions provides the
polarization diagram which has the branch cut q2/

√
(q2 − ω2 − iε). Section 3 is devoted to

the calculation of the effective action. Here we follow the standard strategy used at T = 0
for deriving the Goldstone action [3]. Integration of the Goldstone field at T = 0 enables us
to obtain the electromagnetic response function in terms of the external fields. In section 4
we compute the penetration depth, conductivity, and charge–charge correlation. Section 5 is
devoted to discussion.

2. The model for a square Fermi surface in the presence of a ‘d’-wave order parameter
in two dimensions

Electronic states near a square Fermi surface can be mapped onto one-dimensional quantum
chains [1]. Starting from one electron per site one obtains a square Fermi surface. Two sets of
chains arise, one for each axis of the square. When we introduce the ‘d’-wave superconducting
interaction, the Fermi surface is reduced to two pairs of Fermi surfaces, ±kF1 and ±kF2 , with
four nodal points [2]:

kF1 =
(
π

2a
,
π

2a

)
kF2 =

(
π

2a
,− π

2a

)
.

Around each nodal Fermi point one obtains a two-dimensional Dirac equation. When fluct-
uations of the ‘d’-wave order parameter are included, our problem is equivalent to (2 + 1)-
dimensional gauge theory for relativistic fermions.

Our starting point is the general representation for superconductivity introduced in
reference [2]. The action for our model is

S =
∫

dt
∑

�r

{ ∑
σ=↑,↓

[
C†
σ (�r, t)(i ∂t + eaext0 − EF )Cσ (�r, t)

+ t
∑
µ=x,y

(C†
σ (�r + dµ, t) exp(ieaextµ )Cσ (�r, t) + h.c.)

]

−
( ∑
µ=x,y

"(�r, �r + dµ)[C†
↑(�r, t)C†

↓(�r + dµ, t)

− C
†
↓(�r, t)C†

↑(�r + dµ, t)] + h.c.

)
+

∑
µ=x,y

|"(�r, �r + dµ)|2
2J

}
. (1)

In the action S, C†
σ and Cσ are the two-dimensional fermion fields. aextµ , µ = 0, x, y are the

external vector potentials. "(�r, �r + dµ) and "∗(�r, �r + dµ) are the nearest-neighbour pairings
(no on-site pairing). J is the superconducting coupling constant. The partition function of the
action S given by equation (1) takes the form

Z =
∫

D" D"∗ DC†
↑ DC↑ DC†

↓ DC↓ eiS. (2)
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In the next step we expand the fermion fields around �KF1 = �Ks=1 and �KF2 = �Ks=2:

Cσ (�r) =
∑
s=1,2

[ei �Ks ·�rRs,σ (�r) + e−i �Ks ·�rLs,σ (�r)]. (3)

Rs,σ and Ls,σ represent the right and left movers for each pair of axes;

ê1 = x̂ + ŷ√
2

ê2 = x̂ − ŷ√
2

(x̂ and ŷ are the unit vectors in the x- and y-directions). The superconducting order parameter
"(�r, �r + dµ) can be parametrized in terms of a single Nambu–Goldstone excitation given by
the phase α(�r) and a gauge-invariant real field ρ(�r, �r + dµ):

"(�r, �r + dµ) = e(i/2)α(�r)ρ(�r, �r + dµ)e(i/2)α(�r+dµ).

α(�r) ≡ 2eα̃(�r)where e is the electric charge. The phaseα(�r) obeys the Z2-invariance condition
α(�r) = α(�r)+πh̄. Using this parametrization the integration measure is changed to

∫
Dρ Dα

with α(�r) restricted to 0 � α(�r) � πh̄. Using the fact that the integration measure is invariant
under the transformation, we have

Cσ (�r) = e(i/2)α(�r)C̃σ (�r) C†
σ (�r) = C̃†

σ (�r)e−(i/2)α(�r)

Rs,σ (�r) = e(i/2)α(�r)R̃s,σ (�r) Rs,†σ (�r) = R̃†
s,σ (�r)e−(i/2)α(�r)

Ls,σ (�r) = e(i/2)α(�r)L̃s,σ (�r) Ls,†σ (�r) = L̃†
s,σ (�r)e−(i/2)α(�r).

(4)

As a result of the transformation of equation (4), the action in equation (1) depends on the
‘neutral’ fields R̃s,σ , R̃†

s,σ , L̃s,σ , L̃†
s,σ , ρ(�r, �r + dµ), and the effective gauge field:

ea0 = eaext0 − 1

2
∂tα e�a = e�aext − 1

2
�∂α. (5)

In the remainder of this section we derive the continuum limit of the action in terms of
the neutral fields C̃σ (�r) and C̃†

σ (�r). Here we have to consider explicitly the kinetic term

H0 = −t
∑
µ=x,y

∑
�r
C̃†
σ (�r + dµ)eieaµC̃σ (�r) + h.c.

and the superconducting Hamiltonian:

HSC =
∑
µ=x,y

∑
�r
ρ(�r, �r + dµ)[C̃†

↑(�r)C̃†
↓(�r + dµ)− C̃

†
↓(�r)C̃†

↑(�r + dµ) + h.c.]

+
∑
µ=x,y

∑
�r

[ρ(�r, �r + dµ)]2

2J
.

For the fermion we substitute the representation

C̃σ (�r) =
∑
s=1,2

(ei �Ks ·�r R̃s,σ (�r) + e−i �Ks ·�r L̃s,σ (�r))

and for the superconductor we consider the situation where the minimum occurs for the dx2−y2

case:

ρ(�r, �r + dx) = −ρ(�r, �r + dy). (6)

We perform a derivative expansion, and rotate the coordinates:

∂1 = ∂x + ∂y√
2

∂2 = ∂x − ∂y√
2

a1 = ax + ay√
2

a2 = ax − ay√
2
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and introduce the spinors

ψ1 =
(
R̃1,↑
L̃

†
1,↓

)
ψ2 =

(
R̃2,↑
L̃

†
2,↓

)

χ1 =
(
R̃1,↓

−L̃†
1,↑

)
χ2 =

(
R̃2,↓

−L̃†
2,↑

)
.

(7)

Next we rewrite the action in the Lorentz-invariant form plus leading irrelevant terms. We
introduce the γ -matrices:

γ 0 = σ2 γ 1 = iσ1 γ 2 = iσ3

(γ 0)2 = −(γ 1)2 = −(γ 2)2 = 1.
(8)

We introduce the velocities v = 2
√

2t , �(�r) = 2
√

2|ρ(�r, �r + dµ)|, and use ψ̄1 = ψ
†
1γ

0,
ψ̄2 = ψ

†
2γ

0, χ̄1 = χ
†
1γ

0, χ̄2 = χ
†
2γ

0. As a result, the action, equation (1), is replaced by the
action S̃ in the continuum limit:

S = S(�) + S(ψ) + S(χ). (9)

The form of S(ψ) is identical to that of S(χ) since the action has no explicit dependence on the
spin excitations.

S(�) =
∫

d2r

∫
dt
�2(�r)

2J
J = Ĵ/−3. (10)

The coupling constant J has the dimension /−3 since �(�r) is dimensionless.

S(ψ) = S
(ψ)

0 + δS(ψ). (11)

S(ψ) represents the relevant part of the action and δS(ψ) the leading irrelevant terms. The form
of S(χ) = S

(χ)

0 + δS(χ) is the same as that of S(ψ) with δS(χ) being an irrelevant part similar to
δS(ψ):

S
(ψ)

0 =
∫

d2r dt {ψ̄1γ
0(i ∂0 + eA0)ψ1 + vψ̄1γ

1(i ∂1 + eA1)ψ1 +�ψ̄1γ
2(i ∂2 + eA2)ψ1

+ ψ̄2γ
0(i ∂0 + eB0)ψ2 +�ψ̄2γ

1(i ∂1 + eB1)ψ2 + vψ̄2γ
2(i ∂2 + eB2)ψ2}. (12)

In equation (12) we have used the convention

va1 = A0 va2 = B0 i[�(�r)]−1 ∂2�(�r) = A2

B2 = A1 ≡ 1

v
a0 i[�(�r)]−1 ∂1�(�r) = B1.

(13)

The irrelevant part is given by

δS(ψ) =
∫

d2r dt {−g1[ψ̄1γ
0(−∂2

2 − 2 ∂1 ∂2)ψ1a2 + ψ̄2γ
0(−∂2

1 − 2 ∂2 ∂1)ψ2a1]

− g2[ψ̄1γ
1(i ∂1)ψ1(a2)

2 + ψ̄2γ
2(i ∂2)ψ2(a1)

2]}. (14)

Dimensional analysis gives that v and �(�r) are marginal and g1 and g2 are irrelevant.

v = v̂/0 �(�r) = �̂(�r)/0 e = ê/(4−D)/2

g1 = ĝ1/
−D/4 g2 = ĝ2/

2−D D = d + 1
(15)

where ĝ1 and ĝ2 are dimensionless and are given in terms of the dimensionless charge ê:
ĝ1 = êv/4 and ĝ2 = ê2v/4.
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3. The effective action

In this section we will compute the effective action in terms of the gauge field e�a = �∂α−e�aext .
We introduce the Green’s function:

S1(�q, ω) = γ 0ω − γ 1(vq1)− γ 2(�q2)

−[ω2 − (vq1)2 − (�q2)2]

S2(�q, ω) = γ 0ω − γ 1(�q1)− γ 2(vq2)

−[ω2 − (vq1)2 − (�q2)2]
.

(16)

In equation (16) we have replaced �(�r) by � which is independent of �r . The integration of
the fermion fields produces an effective action:

4(�, a0, �a) def= 40(�, 0, 0) + 42(�, a0, �a)
where 40(�, 0, 0) is the saddle-point action and where 42(�, a0, �a) contains the Gaussian
fluctuations.

Z =
∫

Dα D� DC†
↑ DC↑ DC†

↓ DC↓ eiS =
∫

Dα D� ei4(�,a0,�a) (17)

where

40(�, 0, 0) =
∫

d2r

∫
dt

{
�2(�r)

2J
− i 2 Tr log[S−1

1 ] − i 2 Tr log[S−1
2 ]

}
. (18)

� is chosen using the condition ∂40/∂� = 0 and 42(�, a0, �a) is given by

42(�, a0, �a) = 2
∫

dω

2π

∫
d2q

(2π)2
{−ig2[Tr(S1( �p,6)γ 1p1)a2(�q, ω)a2(−�q,−ω)

+ Tr(S2( �p,6)γ 2p2)a1(�q, ω)a1(−�q,−ω)]
+

i

2
g2

1[Tr(γ 0S1( �p,6)(p2
2 + 2p1p2)

× γ 0S1( �p + �q,6 + ω)((p2 + q2)
2 + 2(p1 + q1)(p2 + q2)))a2(�q, ω)a2(−�q, ω)

+ Tr(γ 0S2( �p,6)(p2
1 + 2p1p2)

× γ 0S2( �p + �q,6 + ω)((p1 + q1)
2 + 2(p1 + q1)(p2 + q2)))a1(�q, ω)a1(−�q, ω)]

+ e2vµvν�(1)
µ,ν(�q, ω)Aµ(�q, ω)Aν(−�q,−ω)

+ e2ṽµṽν�(2)
µ,ν(�q, ω)Bµ(�q, ω)Bν(−�q,−ω)}. (19)

In equation (19) the first two terms proportional to g2 and g2
1 represent the diamagnetic term

induced by the irrelevant actions δS(ψ) and δS(χ) (see equation (14)). In equation (19) vµ

and ṽµ represent the velocity vector: vµ = (1, v,�) and ṽµ = (1,�, v). �(1)
µ,ν(�q, ω) and

�(2)
µ,ν(�q, ω) represent the polarization diagrams:

�(1)
µ,ν(�q, ω) = i

2
Tr[γ µS1( �p + �q,6 + ω)γ νS1( �p,ω)]

�(2)
µ,ν(�q, ω) = i

2
Tr[γ µS2( �p + �q,6 + ω)γ νS2( �p,ω)].

(20)

Following the method given in references [4] and [5] (see equation (39a) in reference [5]) we
evaluate the polarization diagram for relativistic fermions in 2 + 1 dimensions. (In equations
(18) and (19) we use the convention

Tr ≡
∫

d6

2π

∫
d2p

(2π)2
t̂r
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where t̂r stands for the γ -matrices.) The polarization diagrams are given by

�(1)
µ,ν(�q, ω) = 4(2 − 3/2)

(4π)3/2

∫ 1

0
dx

√
x(1 − x)

[
1

v�
�̂(1)
µ,ν(�q, ω)

]
(21)

where

�̂(1)
µ,ν(�q, ω) = [ω2 − (vq1)

2 − (�q2)
2]gµν + vµvνqµqν

[(vq1)2 + (�q2)2 − ω2 − iε]−1/2
(22)

with gµν = 0 for µ �= ν and g00 = −gµµ = 1. The expression for �(2)
µ,ν(�q, ω) is similar to

that for�(1)
µ,ν(�q, ω) when we exchange q1 with q2. In equations (19)–(22) we have used for�

the saddle-point value obtained from the condition ∂40/∂� = 0. Next we evaluate the value
of the saddle point � using 40(�, 0, 0). Using equation (18) we obtain

40(�, 0, 0) = [40(�, 0, 0)− 40(0, 0, 0)] + 40(0, 0, 0)

= − i 2 log det[iγ 0 ∂0 + ivγ 1 ∂1 + i�γ 2 ∂2] + i 2 log det[iγ 0 ∂0 + ivγ 1 ∂1]

− i 2 log det[iγ 0 ∂0 + i�γ 1 ∂1 + ivγ 2 ∂2] + i 2 log det[iγ 0 ∂0 + ivγ 2 ∂2]

+
�2

8J
+ constant

= i 2
∫

d6

2π

d2p

(2π)2

{
log

[
1 − (�p2)

2

62 − (vp1)2

]
+ log

[
1 − (�p1)

2

62 − (vp2)2

]}

+
�2

8J
+ constant. (23)

At T = 0 we obtain

40(�, 0, 0, ) = −2v
∫ /

0

dp

2π
p

∫ 2π

0

dθ

2π

{[√
cos2 θ +

(
�

v

)2

sin2 θ −
√

cos2 θ

]

+

[√
sin2 θ +

(
�

v

)2

cos2 θ −
√

sin2 θ

]}
+
�2

8J
+ constant. (24)

The saddle point� is obtained from the condition ∂40/∂� = 0. A non-zero solution for� is
given by

3π

4Ĵ /v
=

∫ 2π

0

dθ

2π

[
sin2 θ√

cos2 θ + (�/v)2 sin2 θ

+
cos2 θ√

sin2 θ + (�/v)2 cos2 θ

]
(25)

where J has been replaced by the dimensionless coupling constant Ĵ : J = Ĵ/−3. The solution
of equation (25) is such that when Ĵ → 0, � → 0. Therefore we conclude that at T = 0 for
Ĵ �= 0 we have � �= 0.

The value Ĵ = Ĵ1 = (3π/2)v is special since we obtain the solution �/v = 1. Next we
solve equation (25) in the limit Ĵ /v → 0 and find

�

v
∼

(
2

π

)2
Ĵ

3v
.

At T �= 0 equation (25) is replaced by

π

4Ĵ /v
=

∫ 2π

0

dθ

2π

∫ 1

0
dy y2

{
sin2 θ tanh

[
y
v/

2KBT
ε(θ)

]/
ε(θ)

+ cos2 θ tanh

[
y
v/

2KBT
ε̃(θ)

]/
ε̃(θ)

}
(26)
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where ε(θ) and ε̃(θ) are given by

ε(θ) =
√

cos2 θ +

(
�

v

)2

sin2 θ

ε̃(θ) =
√

sin2 θ +

(
�

v

)2

cos2 θ.

For a fixed Ĵ �= 0 we compute the temperature T0 for which �(T0) = 0. We find

KBT0 ∼ v/

π

(
Ĵ

v

)
.

Using the value of the gap at T = 0:

�(T = 0) = �(0) = 4

3π2
Ĵ ∼ 4

3π

KBT0

/

we have for T < T0,

�(T ) ∼ �(0)

(
T0 − T

T0

)
.

Using the value of � we compute 42(�, a0, �a). We separate equation (19) into two parts:,

42(�, a0, �a) ≡ 4
diamagnetic
2 (�, a0, �a) + 4polarization

2 (�, a0, �a).
4

diamagnetic
2 (�, a0, �a) is given by the irrelevant terms g2 and g2

1 in equation (19) and
4

polarization
2 (�, a0, �a) represents the second part described by equation (19) and equation (20).

The diamagnetic part takes the form

4
diamagnetic
2 (�, a0, �a)

= 2
∫

dω

2π

∫
d2q

(2π)2

{[
−ĝ2/

2−D
∫ / dp

2π
p2

∫
dθ

2π

cos2 θ√
cos2 θ + (�/v)2 sin2 θ

+
ĝ2

1

2v
/−D

∫ / dp

2π
p2

∫
dθ

2π

sin4 θ + sin2(2θ)√
cos2 θ + (�/v)2 sin2 θ

]
�a(�q, ω) · �a(−�q,−ω)

}

=
∫

dω

2π

∫
d2q

(2π)2

{
−v

2
K

(
�

v

)(
1

2
�∂α − ê�aext

)
�q,ω

·
(

1

2
�∂α − ê�aext

)
−�q,−ω

}
(27)

where K(�/v) is given by

K

(
�

v

)
= /2

12π

∫ 2π

0

dθ

2π

[
2

cos2 θ√
cos2 θ + (�/v)2 sin2 θ

− 3

10

sin4 θ + 4 sin2 θ cos2 θ√
cos2 θ + (�/v)2 sin2 θ

]
. (28)

In obtaining equation (28) we have substituted D = 3 and have made the replacements

ĝ2 = ĝ2
1/v = ê2v/4 e = ê/(1−D)/2.

We evaluate equation (28) and find for �/v ∼ 1 a power expansion in [1 − (�/v)2]:

K

(
�

v

)
∼ /2

12π

{
1 − 0.04

[
1 −

(
�

v

)2]
+ · · ·

}
.
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Equation (28) vanishes for � = �min: �min/v � 1. Therefore we can express K(�/v) for
small values of � as

K

(
�

v

)
� /2

12π

(
�−�min

�min

)
.

This leads at finite temperature to the result

K

(
�

v

)
= K

(
�(0)

v

)(
T − T̃0

T̃0

)
T̃0 � T0 (29)

where T̃0 is the temperature at whichK(�(T̃0)/v) = 0. Next we evaluate 4polarization
2 (�, a0, �a)

with the help of equations (21) and (22). We make the substitutions B2 = A1 = (1/v)a0,
A0 = va1, B0 = va2; we neglect the amplitude fluctuations and make the replacement
A2 = B1 = 0 (see equation (13)):

4
polarization
2 (�, a0, �a) =

∫
dω

2π

∫
d2q

(2π)2

{
−v

2
(∂1α − 2êaext1 )�q,ω

×
[

0.13(e/ê)2

4�
P11(�q, ω)

]
(∂1α − 2êaext1 )−�q,−ω

− v

2
(∂2α − 2êaext2 )�q,ω

[
0.13(e/ê)2

4�
P22(�q, ω)

]
(∂2α − 2êaext2 )−�q,−ω

+
1

2v
(∂0α − 2êaext0 )�q,ω

[
0.13(e/ê)2

4�

]
(∂0α − 2êaext0 )−�q,−ω

+
0.13v

4�
(∂0α − 2êaext0 )�q,ω

× [P01(�q, ω)(∂1α − 2êaext1 )−�q,−ω + P02(�q, ω)(∂2α − 2êaext2 )−�q,−ω

}
(30)

where the elements of the polarization matrix are

P11(�q, ω) = (vq1)
2 + (�q2)

2

[(vq1)2 + (�q2)2 − ω2 − iε]1/2

P22(�q, ω) = (vq2)
2 + (�q1)

2

[(vq2)2 + (�q1)2 − ω2 − iε]1/2

P01(�q, ω) = −ωq1

[(vq1)2 + (�q2)2 − ω2 − iε]1/2

P02(�q, ω) = −ωq2

[(vq2)2 + (�q1)2 − ω2 − iε]1/2

P̂00(�q, ω) ≡ P
(1)
00 (�q, ω) + P (2)00 (�q, ω)

P
(1)
00 (�q, ω) = (�q2)

2 − ω2

[(vq1)2 + (�q2)2 − ω2 − iε]1/2

P
(2)
00 (�q, ω) = (�q1)

2 − ω2

[(vq2)2 + (�q1)2 − ω2 − iε]1/2
.

(31)

In the final step we add the diamagnetic contribution, equation (27), to the polarization part
given by equation (30). We integrate out the Nambu–Goldstone field α and obtain the effective
action as a function of the external fields. At T → 0 we neglect the vortex contributions and
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consider only the Gaussian part of the field α:

4eff (�, a
ext
0 , �aext ) =

∫
dω

2π

∫
d2q

(2π)2

{
−1

2
aext0 (�q, ω)

×
[
q2

1K11(�q, ω) + q2
2K22(�q, ω)

ω2

]
aext0 (−�q,−ω)

− 1

2
aext1 (�q, ω)[K11(�q, ω)]aext1 (−�q,−ω)

− 1

2
aext2 (�q, ω)[K22(�q, ω)]aext2 (−�q,−ω)

− aext0 (�q, ω)
[
K11(�q, ω)

(
q1

ω

)]
aext1 (−�q,−ω)

− aext0 (�q, ω)
[
K22(�q, ω)

(
q2

ω

)]
aext2 (−�q,−ω)

}
(32)

where

K11(�q, ω) = ve2

4π

[
R

(
�

v

)
+

1.6

�
P11

( �q
/
,
ω

/

)]

K22(�q, ω) = ve2

4π

[
R

(
�

v

)
+

1.6

�
P22

( �q
/
,
ω

/

)] (33)

R

(
�

v

)
def= 1

12
K

(
�

v

)(
ê

e

)2

. (34)

We remark that if �aext is a transverse gauge field, the terms aext0 aext1 and aext0 aext2 in equation
(32) vanish.

4. The electromagnetic response

Using equation (32) we will study the response of the ‘d’-wave superconductor to the external
fields. We will consider the penetration depth, charge–charge correlation, and the ohmic
conductivity. We start the analysis with the penetration depth. For normal superconductors
(‘s’ wave) the polarization diagram vanishes at T = 0. For the ‘d’-wave case the polarization
part gives rise to significant corrections to the penetration depth. Using equation (32) we
compute the current J1 = −∂4eff /∂aext1 , �∇ · �aext = 0, and find

J1(�q, ω) = −K11(�q, ω)aext1 (�q, ω) (35)

whereK11(�q, ω) is given by equations (33) and (34). We will use equation (35) to compute the
penetration depth. Due to the fact that �/v �= 1 and P11(�q, ω) �= P22(�q, ω), the penetration
depth will depend on the direction. For simplicity we will assume that the two-dimensional
‘d’-wave superconductor is rotated by 45◦ and that a current J0 is applied along the ŷ-edge of
the sample. As a result the magnetic field �B(�r) will be in the z-direction. Using the analysis
given in reference [6] we find

B(�r) = −4π

c
J0

∫ ∞

−∞

d2q1

2π

iq1ei�q1·�r

q2
1 + 4πK11(q1, q2 = 0, ω)

. (36)

Equation (36) is evaluated by contour integration. If the equation

q2
1 + 4πK11(q1, q2 = 0, ω) = 0 (37)
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has no real solution, we have a Meissner effect. In order to solve equation (37) we substitute
ω = 0 and use the dimensionless charge ê2 = 4π/137. Equation (37) takes the dimensionless
form (s = q1//, ω = 0)

s2 + v
4π

137

[
R

(
�

v

)
+

1.6

�/v

s2

√
s2 − iε

]
= 0. (38)

We solve equation (38) in the limit ε → 0 and find that the condition for an imaginary solution
for s is given by(

v 4π

137

1.6

�/v

)2

− 4

[
v 4π

137
R

(
�

v

)]
� 0.

This condition is equivalent to a critical value � = �c given by �c/v � 0.6/v. This leads to
the following penetration depth at T = 0:

δ = δ0

(
�−�c

�c

)−1/2

δ0 = 1√
ve2R(�/v)

. (39)

Using the fact that � = �(T ), we can estimate the penetration depth at T �= 0:

δ(T ) = δ0(0)

(
1 − T

T̃0

)−1/2[
�(0)

�c

(
1 − T

T0

)
− 1

]−1/2

= δ(0)

(
1 − T

T̃0

)−1/2(
1 − T

T ∗

)−1/2

(40)

where

T ∗ = T0

(
�(0)

�c
− 1

)
T < T ∗ < T̃ < T0

δ(0) ≡ 1√
ve2R(�(0)/v)

(
�(0)

�c
− 1

)−1/2

.

The new thing in equation (40) is the term (1 − T/T ∗)−1/2 induced by the paramagnetic
polarization diagrams.

Next we compute the penetration depth in the quasi-static limitω = ω0 �= 0 in the presence
of finite elastic scattering ε = ε0 �= 0. The presence of the elastic scattering introduces an
infrared cut-off for the momentum q0. Under this condition the penetration depth (computed
at a fixed q0 and frequency ω0) takes the form

δ−1(T ) = δ−1
0 (0)Re

{[(
1 − T

T0

)
− eiφ/2X(ω0/T0)

1 − T/T0

]1/2}

= δ−1
0 (0)

[(
1 − T

T̃0

)2

+
X2(ω0/T0)

(1 − T/T0)2
− 2 cos

φ

2

X(ω0/T0)

(1 − T/T0)

]1/4

cos
α

2
(41)

where

X

(
ω0

T0

)
≡ (vq0/

√
/)2

[((vq0)2 − ω2
0)

2 + ε2
0 ]1/2

tan φ = ε0

(vq0)2 − ω2
0

tan α = − sin(φ/2)X(ω0/T0)(1 − T/T0)
−1

(1 − T/T̃0)− cos(φ/2)X(ω0/T0)(1 − T/T0)−1
.

(42)
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Equation (41) has the interesting property that as a function of (ω0/vq0) we can change the
temperature dependence of δ(T ). Forω0/(vq0) � 1 the first term is dominant in equation (41).
As a result, when T → 0 we find that the penetration depth increases with the temperature:

δ(T ) ∼ δ0(0)

(
1 + constant × T

T0

)
.

In the limit |ω2
0 − (vq0)

2| ∼ ε2
0 , the second term is dominant, giving rise to a decrease of the

penetration depth with the temperature. In this range of parameters we find qualitatively the
same behaviour of δ(T ) as given in references [9, 10].

In the last part we compute the conductivity and charge–charge correlation. The cond-
uctivity is obtained when we substitute −iωaext1 (�q, ω) = Eext1 (�q, ω) in equation (35). As a
result, we find the conductivity for �/v = 1:

σ(�q, ω) = −i
K(�q, ω)
ω

= e2v

4π
σ̃ (�q, ω)

where

σ̃ (�q, ω) = − i

ω

[
R

(
�

v

)
+

1.6

�

vq//

[1 − (ω/[vq])2 − iε]1/2

]
. (43)

We write σ̃ = σ̃R + iσ̃I . σ̃R is the ohmic part of the conductivity. For finite elastic scattering
ε = ε0, the ohmic part σ̃R is given as a function of

z = ω

vq
and tan φ = ε0

1 − z2

as follows:

σR(z, ε0) = ê2v

4π

1.6

�

sin(φ/2)

z[(1 − z2)2 + ε2
0 ]1/4

. (44)

Equation (44) shows that the normal part of the conductivity is finite at ω → 0 and q → 0,
such that ω/q → 1. Equation (44) shows that unlike the ‘s’ wave, the ‘d’ wave has an ohmic
conductivity.

The charge–charge correlation is computed from equation (32):

〈ρ(�q, ω)ρ(−�q,−ω)〉 = q2
1K11(�q, ω) + q2

2K22(�q, ω)
ω2

�/v∼1=
(
q

ω

)2[
R

(
�

v

)
+

1.6

�

(vq/
√
/)2√

(vq)2 − ω2 − iε

]
. (45)

Equation (45) shows that instead of a regular pole, we have a branch cut.

5. Discussion

The ‘d’-wave superconductor has been mapped to an effective Nambu–Goldstone action. The
new thing in the ‘d’-wave action is the presence of the paramagnetic polarization which has a
branch-cut form. Due to the branch-cut form the conductivity and the penetration depth are
strongly renormalized. Using this action we have computed the ohmic conductivity and the
microwave penetration depth. We find an upturn in the penetration depth, as a function of
temperature, which might be relevant to recent experiments [9].
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